Revised November 2009

U.S. Hours and Productivity Behavior
Using CPS Hours Worked Data: 1947-III to 2009-III

SIMONA E. COCIUBA
Federal Reserve Bank of Dallas

EDWARD C. PRESCOTT
Arizona State University
and Federal Reserve Bank of Minneapolis

ALEXANDER UEBERFELDT
Bank of Canada

ABSTRACT

We construct estimates of average hours worked and labor productivity for the U.S. economy. The data are based on the Current Population Survey (CPS). The methodology and data sources are presented in detail.
1. INTRODUCTION

The goals of this paper are to construct time series of average hours worked and labor productivity for the U.S. economy using the Current Population Survey (CPS). *Average hours worked* is defined as total hours worked per population ages 16 to 64. *Labor productivity* is defined as gross domestic product per total hours worked.

The primary source of data for hours and population is the *Employment and Earnings* publications of the U.S. Department of Labor, Bureau of Labor Statistics. These data are based on the CPS.

The population covered by our analysis is the non-institutional population, ages 16 to 64. We construct this series by adding CPS civilian non-institutional population ages 16 to 64 and military personnel worldwide.\(^1\)

The total hours worked is constructed using CPS data on persons at work, and their weekly average hours of work. The CPS estimate of total hours does not include military hours. We estimate military hours and add it to the civilian hours to obtain total hours worked.

Figures 1 through 7 plot data on gross domestic product (GDP) per capita, average hours worked and labor productivity, respectively. The rest of the paper presents the methodology and data sources in detail.

\(^1\) The gross domestic product (GDP) measure provided by the Bureau of Economic Analysis includes on the cost side the salaries to military personnel worldwide, and not only the salaries of the military personnel in the U.S. territories. This justifies adding the military personnel worldwide in our measure of population.
Figure 5. U.S. Detrended* GDP per CPS Hours
1947-III to 2009-III

* Quarterly trend growth: 0.5%

Figure 6. U.S. Detrended* GDP per CPS Hours
1989-I to 2009-III

* Quarterly trend growth: 0.5%
2. **Average Hours Worked Estimate**

Average hours worked is defined as total hours worked per noninstitutional population ages 16 to 64. The following definitions apply:

\[
\text{Noninstitutitional population 16-64} = \text{Civilian population + military personnel}
\]

\[
\text{Total hours worked} = \text{Civilian hours + military hours}
\]

Civilian hours are constructed using CPS data on persons at work and their weekly average hours of work. Military personnel hours are calculated using military personnel data and assuming a 40 hour workweek.
For calculations, refer to Excel file “US Hours and Productivity”, worksheet “average hours worked”.

2.1. TOTAL CIVILIAN HOURS
For details, refer to Excel file “US Hours and Productivity”, worksheet “Data1” and “Data1b”.
Total hours worked by the civilian noninstitutional population are calculated as follows:

\[
\text{Total civilian hours worked} = \text{Persons at work} \cdot \text{Hours worked per week} \cdot \frac{52}{4}
\]

DEFINITIONS

Civilian noninstitutional population: All persons age 16 or older, that currently reside in one of the 50 states or the District Columbia and who are not inmates of institutions (e.g. penal and mental facilities, homes for the aged) and who are not on active duty in the Armed Forces.

Employed person: All persons who, during the reference week (i) worked at least 1 hour as paid employees, worked in their own business, profession or on their own farm, or worked without pay for more than 15 hours in a family business or farm, or (ii) all persons who were not working, but who were temporarily absent from work due to illness, bad weather, vacation, labor-management disputes, job training or for personal reasons – whether or not they were paid for the time off.

Persons at work: All employed persons who were not absent from work during the reference week.

DATA SOURCES

• For data from June 1947 to June 1959, the data source is U.S. Bureau of the Census, Current Population Reports, Labor Force, Series P-57, various issues. The P-57 reports were published by the U.S. Government Printing Office, Washington D.C.
• For data from 1959 to June 1976, the data source is U.S. Department of Labor, Bureau of Labor Statistics, Employment and Earnings, Table A-24. Persons at work in agriculture and related and in nonagricultural industries by hours of work.

Calculations

1. From the *Employment and Earnings* publications we obtain monthly data on:
 - Persons at work, and
 - Average hours worked by a person at work

2. We convert the monthly data into data on quarterly basis (see details below)

3. The series obtained are deseasonalized using the census deseasonalizer X12, multiplicative deseasonalizing as provided by E-views.

4. Total hours worked per quarter are given by the persons at work on a quarterly basis times the average hours worked per week on a quarterly basis times $\frac{52}{4}$.

Converting monthly data into quarterly basis data

Let m_i denote monthly data to be converted into quarterly data. Define:

$$d = \frac{\min \{m_i, m_2, m_3\}}{\text{average} \{m_i, m_2, m_3\}}$$

The quarterly basis data over those three months, q, is computed as follows:

$$q = \begin{cases}
3 \cdot \text{average} \{m_i, m_2, m_3\} - \min \{m_i, m_2, m_3\}, & \text{if } d < 0.95 \\
2 \cdot \text{average} \{m_i, m_2, m_3\}, & \text{otherwise}
\end{cases}$$

2 The table number changes between different Employment and Earnings publications, but the title indicates data on persons at work by hours of work.
In words: If no particular value of the monthly data deviates too much from the average of those monthly data, then the value for the respective quarter is the average over all values. Otherwise, the minimum value is ignored, and the quarterly data is computed as the average of the two highest monthly values. The goal of this procedure is to sort out outliers on the low side.

Consider the following example. Table 1 presents the data for selected months of the year 1998. With the procedure described we ignore the month of September 1998 when computing the data for the third quarter of 1998.

<table>
<thead>
<tr>
<th>Month</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours</td>
<td>39.9</td>
<td>39.9</td>
<td>36.8</td>
<td>39.5</td>
</tr>
</tbody>
</table>

Table 1. Average Hours Worked per Week by a Person at Work, in 1998

Note: In some other years in our dataset, the data for the month of September is a large outlier relative to data in the other months. This is due to a holiday (Labor Day) falling in the reference week (the reference week is the week containing the week of the 12th).

2.2. POPULATION DATA
For details, refer to Excel file “US Hours and Productivity”, worksheet “Data2”.

DATA SOURCES
 - Go to BLS page http://data.bls.gov/cgi-bin/srgate. Insert code “LNU00000000” to get (Unadj) Civilian Noninstitutional Population 16 and over; insert code “LNU00000097” to get (Unadj) Civilian Noninstitutional Population 65 and over.

CALCULATIONS
1. From the BLS webpage we downloaded monthly data on:
 - civilian noninstitutional population, age 16 and over (Not Seasonally Adjusted)
 - civilian noninstitutional population age 65 and over (Not Seasonally Adjusted)

2. We compute quarterly data of Population 16 and over and Population 65 and over by averaging over monthly data.

3. We obtain quarterly civilian noninstitutional population ages 16 to 64.

2.3. MILITARY PERSONNEL DATA

For details, refer to Excel file “US Hours and Productivity”, worksheet “Data3”.

DATA SOURCES

- U.S. Department of Defense, statistics on Military Personnel
 http://siadapp.dmde.osd.mil/

CALCULATIONS

1. From the Department of Defense webpage we download data on:
 - Military personnel in U.S. Territories
 - Military personnel worldwide

 From 1956 onward, these data were collected on the 30th of September of each year; data prior to 1956 were collected in June of the respective year. Starting 2000, data are collected quarterly.

2. Data collected on the 30th of September is assumed to be the data for the forth quarter of the respective year. We obtain data for the first three quarters by linear interpolation, that is: \(m_{i,t} = \frac{4-i}{4} m_{4,t-1} + \frac{i}{4} m_{4,t} \), where \(i = 1,2,3 \) denotes the quarter, and \(t \) denotes the current year.

3. Starting year 2000, we have data for almost all quarters, we use linear interpolation for any missing values.
3. LABOR PRODUCTIVITY ESTIMATE

Labor productivity is defined as gross domestic product per total hours worked.

DATA SOURCES

- Bureau of Economic Analysis, http://www.bea.gov
 - Table 1.1.6 Real Gross Domestic Product (Billions of Chained (2000) dollars)

CALCULATIONS

1. From the BEA webpage we downloaded quarterly real GDP.
2. We construct GDP per CPS hours worked, and GDP per capita.
3. We detrend using a growth trend of 0.5% per quarter (i.e. 2% annual growth trend)

For calculations, refer to Excel file “US Hours and Productivity”, worksheet “labor productivity”.